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ABSTRACT

We examine 4 years of Kepler 30-min data, and 5 Sectors of TESS 2-min data for the dM3 star KIC-
8507979/TIC-272272592. This rapidly rotating (P=1.2 day) star has previously been identified as flare active,
with a possible long-term decline in its flare output. Such slow changes in surface magnetic activity are potential
indicators of Solar-like activity cycles, which can yield important information about the structure of the stellar
dynamo. We find that while TIC-272272592 shows evidence for both short and long timescale variations in
its flare activity, it is unlikely physically motivated. Only a handful of stars have been subjected to such long
baseline point-in-time flare studies, and we urge caution in comparing results between telescopes due to differ-
ences in bandpass, signal to noise, and cadence. In this work, we develop an approach to measure variations
in the flare frequency distributions over time, which is quantified as a function of the observing baseline. For
TIC-272272592, we find a 2.7σ detection of a Sector which has a flare deficit, therefore indicating the short term
variation could be a result of sampling statistics. This quantifiable approach to describing flare rate variation is
a powerful new method for measuring the months-to-years changes in surface magnetic activity, and provides
important constraints on activity cycles and dynamo models for low mass stars.

Keywords: Stellar Flares (1603), Stellar Activity (1580)

1. INTRODUCTION

The 22-year solar magnetic activity cycle is one of the most
critical observations to explain with stellar dynamo models
(e.g. Babcock 1961). Beyond the characteristic timescale,
each activity cycle shows dramatic changes in surface prop-
erties, including a large scale magnetic polarity reversal, the
“butterfly diagram” evolution of sunspot emergence from
high to low latitudes, and the increase and decrease in oc-
currence of photospheric and chromospheric activity indica-
tors such as spots, faculae, and flares. While the Sun’s activ-
ity cycle has been studied for centuries (Eddy 1980; Usoskin
2017), to understand the formation and evolution of dynamos
we must detect activity cycles from other stars. However, ac-
tivity cycles for stars are notoriously difficult to constrain, as
most measurable features of the solar activity cycle are very
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low amplitude, or require intensive observations to detect
from other stars (e.g., Strassmeier 2005; Schrijver & Zwaan
2000). Activity cycles are therefore only robustly constrained
for a few hundred nearby stars, primarily from high resolu-
tion spectroscopic monitoring programs over decades (e.g.
Baliunas et al. 1995; Egeland et al. 2017; Baum et al. 2022).

Other observable indicators of stellar activity cycles have
been proposed, based on methods used for the Sun. Bolom-
metric luminosity is known to change over the course of the
solar cycle (e.g., Foukal & Lean 1988). While individual
sunspots can cause large amplitude, short timescale dips in
the solar brightness, the Sun is on average brighter during
activity maximum due to the presence of faculae (e.g., Wang
et al. 2005). The signal is very low amplitude, with only a
0.1% change in “Total Solar Irradiance” over the activity cy-
cle (Kopp et al. 2016). Missions like Kepler (Borucki et al.
2010) have been able to detect modulations due to starspots
rotating in and out of view, and with careful analysis can de-
tect long-term flux variations that may indicate activity cy-
cles. For example, Montet et al. (2017) used Kepler to reveal
an evolution from spot to faculae dominated surface activity.
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However, long-term trends in starspot coverage are difficult
to determine for most stars, and spot evolution and differ-
ential rotation can confound efforts to estimate changes in
starspot behavior (Aigrain et al. 2015).

The best characterized stellar activity cycles come from
decades long spectroscopic surveys, typically using the Ca
II H&K lines. Surveys like the famous Mount Wilson HK
project (Duncan et al. 1991) have carried out high resolution
spectroscopic monitoring for a few thousand stars over many
decades (e.g., Baliunas et al. 1995; Hall et al. 2007). While
this approach has been successful in detecting chromospheric
activity variation (and in some cases bona fide cycles) for
nearby stars, it relies on single-object spectroscopy, and is
expensive to produce detailed surveys for large samples.

In this work we advance a relatively new method for char-
acterizing stellar activity cycles, namely stellar flares. As
magnetic reconnection events, flares trace the same small
scale active regions as e.g. starspots (Kowalski et al. 2015).
Flares are easily detected in large photometric surveys such
as Kepler and the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al. 2015), and their occurrence rates directly
correlate with the strength of the stellar magnetic field (Dav-
enport 2016). For the Sun, rates of high energy flares directly
trace the sunspot activity cycle making them excellent tracers
of activity cycles (e.g. Veronig et al. 2002).

Thanks to the combined long baseline data available from
Kepler and now TESS, as well as complimentary ground-
based archives (e.g. Howard et al. 2019), the long-term evo-
lution of flare rates has started to be explored. Davenport
et al. (2020) for example showed no significant variation
in the flare activity from the benchmark M4 star, GJ 1243.
Additionally, Feinstein et al. (2024) presented eleven young
(< 300 Myr) stars with annual flare rate variations over five
years of TESS observations, but the lack of finer time resolu-
tion prevents a robust measurement of activity cycles.

Recently Scoggins et al. (2019) identified the M dwarf
KIC-8507979/TIC-272272592 (hereafter referred to as TIC-
272272592) with known flare activity (Davenport 2016),
which appeared to have a gradual decline in its flare rate in
Kepler data. This star has been re-observed now in 5 Sec-
tors of TESS data over a 3-year baseline, providing an inde-
pendent examination of both its short (month-to-month) and
long-timescale (years) flare behavior. Here we present these
new TESS light curves, and a detailed exploration of the flare
rate for TIC-272272592.

In §2 we review the motivation for flare rate variation stud-
ies, using example data from the Sun. We discuss the Kepler
and TESS data in §3, along with how our sample of flares for
TIC-272272592 was created. The short- and long-timescale
flare rate variations are explored in §4. A thorough exam-
ination of the statistical significance of flare rate variations

is presented in §5, and a discussion of upcoming work with
TESS is provided in §6.

2. THE SOLAR FLARE ACTIVITY CYCLE

The primary motivation for searching for activity cycles
using stellar flares is that we observe similar variations in
flare rates and energies on the Sun. During the solar activity
maximum, the “flare index” (i.e. total daily energy emitted
in short timescale flares) increases by a factor of 100-500,
rapidly rising over ∼2 years, then gradually falling towards
activity minimum, as shown in Figure 1. Similarly, the spe-
cific flare rate (i.e. number of flare events per day at a given
event energy) also varies strongly over the solar cycle. An in-
crease in the specific flare rate of ∼ 10× is observed between
solar maximum and minimum (Veronig et al. 2002). This
observed flare variation is demonstrated in Figure 1, which
shows the number of flares per month over a full 11-year ac-
tivity Cycle 23 using soft X-ray events from RHESSI (Lin
et al. 2002). We also show in Figure 1 the corresponding
per-month flare energy distribution, which shows clear vari-
ation of ∼ 2 orders of magnitude over the activity cycle. The
same behavior is seen in Hα solar flare data across the activ-
ity cycle (Yan et al. 2012). Importantly, while sunspots show
a comparable change in number density over the solar cycle
(e.g. Morris et al. 2019), because flares are less degenerate
in light curves than starspots, flares are easier to unambigu-
ously count and get accurate energy estimates. Therefore,
flares could be more effective tracers of stellar activity cycles
than starspot modulations alone.

The cumulative flare frequency distribution (FFD) shown
in Figure 1 is the standard figure of merit for quantifying flare
activity in stars (e.g. Lacy et al. 1976; Hilton et al. 2011). The
FFD demonstrates the typical power law correlation between
flare occurrence rate and event energy, and allows us to quan-
tify the specific flare rate at a given energy (Davenport et al.
2019). TESS offers a unique ability to quantify flare rates due
to it’s continual monitors of stars. While there is no directly
analogous data set to TESS available for the sun, the depen-
dence of flare rate on activity cycle seen in the x-ray data
suggests it should also be present in the white light of TESS.
For solar flares, the specific flare rate varies by more than an
order of magnitude across the activity cycle. For stars ob-
served with TESS with a Solar-like activity cycle, this would
translate to having 1-2 flares in a given Sector of data in e.g.
Cycle 1 if observed at the end of activity minimum, to ∼10
flares per day near activity maximum 2 years later (e.g. in
Cycle 3). This large amplitude, rapid change in the flare rate
should therefore be one of the most unambiguous signals of
stellar activity cycles from time series data.

3. 10 YEARS OF FLARE DATA

The M dwarf TIC-272272592 was identified as a rapidly
rotating star with a period of P=1.22d (McQuillan et al.
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Figure 1. Soft X-ray flare data from Solar Cycles 23 from RHESSI. The total number of flares per month is shown (left), which shows a dramatic
shift from activity maximum to minimum. The corresponding monthly flare frequency distribution for Cycle 23 (right) is color-coded to match
the monthly bins, and demonstrates a nearly two orders of magnitude change in the specific flare rate over the Solar Cycle. Additionally, as
highlighted by the cumulative flare frequency distribution, the maximum energy of flares produced by the Sun changes by nearly two orders of
magnitude from solar maxima to minima (blue to red).

2013), with a vsin(i) = 14.41 (Jönsson et al. 2020), and as a
flare-active star using data from the Kepler mission by Dav-
enport (2016). It was further flagged as having potential vari-
ation in its flare activity over the 4-year Kepler baseline by
Scoggins et al. (2019). In this Section we introduce new flare
data from over 2 years of the TESS mission, as well as a
reanalysis of the original Kepler data. In total we have point-
in-time activity data spanning nearly 5000 days, allowing us
to probe both short term (∼ month), and long term (∼ year)
variations in flare rate.

3.1. TESS Data

Each Sector of TESS data comprises roughly 27 days of
near continuous observations, with 13 Sectors of data ob-
tained across the sky per Cycle (roughly 1-year). The TESS
Primary Mission (Cycles 1 and 2) observed nearly 200,000
stars from the TESS Input Catalog (TIC; Stassun et al. 2018)
with 2-minute cadence using a broad 600-1000 nm passband,
centered in the Cousins I−band filter.

Staring in 2019 (Sector 14), TESS visited the original Ke-
pler field, re-observing our target star. The Kepler field has
now been observed by TESS1 five times, with the most re-
cent being in August of 2022 (Sector 55). For this project, we
use the light curves from The Science Processing Operations
Center (SPOC; Jenkins et al. 2016), utilizing the 2 minute
cadence and "PDCSAP" fluxes. We chose these data for the
fast cadence, which allows for the detection of shorter dura-
tion flares. The five Sectors of TESS data for TIC-272272592
are shown in Figure 2. As in the original Kepler data for this
star, clear starspot modulations are visible within each TESS
Sector, as well as flares.

3.1.1. Flare Identification in TESS Data

1 10.17909/fwdt-2x66

To efficiently identify flares in the TESS light curves, we
use the convolutional neural network flare finding package
stella (Feinstein et al. 2020a,b). This code has been
trained on a large sample of known flares in the TESS 2-
minute cadence data (Günther et al. 2020), and generates a
probability that each epoch of a given light curve contains a
flare based on this training data. Each light curve was ran
independently though 10 stella models and averaged as
described in Feinstein et al. (2024). The light curves in Fig-
ure 2 are colored by this stella probability, and show clear
separation between the normal starspot modulations and the
impulsive flare events.

While stella will identify and characterize individual
flare probabilities from the light curve, we found the identi-
fication of flare start and stop times did not reliably work for
TIC-272272592. To compensate for this, we used a simple
procedure similar to that of Feinstein et al. (2024) to identify
individual flare events from the continuous array of stella
probabilities. We first selected all points having a probability
> 30%. This first cut was manually selected to eliminate sig-
nificant contamination from the starspot modulation. Flares
were required to contain three consecutive points above this
threshold. Large amplitude flares often contain complex,
multi-peak structure (Davenport et al. 2014). These events
can confuse flare identification algorithms, resulting in large
flares being broken into smaller events with incorrect ener-
gies. To address this, we further grouped together any flare
candidates that are within 40 minutes (i.e. nominally 20
epochs) of each other, and consider those points to be a single
flare event. This threshold is consistent with complex flare
morphology of (Zhu et al. 2015), and was confirmed through
a visual inspection of the data, as well as determined to have
little impact on the resulting flare sample. The events identi-
fied as the start of a flare are marked by the green triangles at
the top of each light curve.

https://doi.org/10.17909/FWDT-2X66
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Figure 2. Light curves for the five available TESS Sectors of data for the active M dwarf, TIC-272272592. Points are colored and sized by the
probability of having a flare, as determined by stella. The location of the start time of each flare identified in our analysis is shown within
each panel (green triangles). Noting the y-axis scale for the normalized flux, Sector 41 (center panel) shows a notable lack of large amplitude
flares compared with the other TESS Sectors, while all other sectors have flares with amplitudes A ≥ 0.1.

While stella is often able to identify low energy flares,
automated flare finding tools can still miss small to moder-
ate amplitude flares. We characterized the completeness of
stella’s flare identification using an injection and recov-
ery procedure, similar to practices in the literature (e.g., Gao
et al. 2022). This injection and recovery allows us to directly
quantify our flare sample completeness, providing additional
accuracy in sample wide measurements in the rest of our
analysis.

The injected flare properties in this procedure came from
the benchmark, high signal-to-noise sample from Tovar Men-
doza et al. (2022), with amplitudes ranging from 0.004× to
0.48× the normalized flux. While these flares are from a

different star, they are suitable for exploring the light curve
of TIC-272272592 because of the similar stellar properties.
Each of the 439 flares from Tovar Mendoza et al. (2022) were
rendered using the Tovar Mendoza et al. (2022) model which
can be parameterized by three parameters: flare amplitude,
full width at half of the maximum flux, and a center time. For
each TESS Sector, we run the injection of a single simulated
flare per trial, rerunning stella in its entirety. Simulated
flares were inserted at a random time step in the light curve
where existing flares were not located, and injected into all 5
Sectors, a total of 10 times. This process resulted in 21,950
total injection and recovery tests over the 5 Sectors. The
flares in the Tovar Mendoza et al. (2022) sample were strate-
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Figure 3. stella completeness determined in bins of flare energy
from our injection and recovery tests within each TESS Sector, as
described in the text (colored points). A logistic function has been
fit to each Sector (solid lines).

gically selected to avoid complex flares, and therefore the
modeling does not include complex flares. However, com-
plex behavior is mostly present in larger flares (Davenport
et al. 2014) where stella is most complete, and any affect
of complex behavior should not impact the completeness es-
timate.

From this sample of injected and recovered flares, we mea-
sured the completeness as a function of flare event energy.
The flare recovery completeness for this sample is shown
Figure 3, both for our entire TESS dataset and also each of
the TESS Sectors individually. We used 15 bins in energy of
equal sample size to minimize the completeness uncertainty
estimates per Sector, where each bin has 1463 injection and
recoveries. We explored increasing the binning and note that
the results are not highly dependant on the bin sizes. The re-
covery uncertainty in each bin was determined by performing
1000 bootstrap resamples with replacement of the bin, each
resample consisting of 146 injection and recoveries from the
energy bin. For each completeness curve shown in Figure 3,
we fit the completeness per bin with a logistic function of the
form:

completeness =
0.96

(1 + e−k(x−x0))
, (1)

where x = log10(E) and E is the flare energy in ergs, and x0

and k are the two logistic function parameters we fit over.
These curves were fit using a standard nonlinear least squares
optimization, and are shown as the solid lines in Figure 3.
The fit coefficients, along with the estimated 50% complete-
ness energies for each Sector are provided in Table 1.

We note that while stella does an excellent job overall
at recovering moderate to high energy events, it never reaches
100% completeness in this experiment. Consistent with the
injection-recovery tests performed in Feinstein et al. (2020b),

Table 1. Fit Completeness Logistic Func-
tion Parameters

Sector k x0 50% Completeness

14 0.39 4.41 32.05
15 0.34 5.54 32.16
41 0.43 4.62 32.08
54 0.35 4.74 32.09
55 0.41 3.60 31.98

NOTE—Despite being an outlier in the
number of energetic flares, Sector 41 is
not a outlier in the logistic function pa-
rameters, demonstrating that complete-
ness is not the reason why we do not see
more flares in Sector 41.

even the highest energy (and high amplitude) flares have a
small chance of being unidentified. This is due to a range
of minor issues, including injected flares being too close to
other flare events, or within 300 time steps of gaps in the light
curve, where stella does not search for flares (Feinstein
et al. 2024). We used a maximum value in our logistic fits
of 0.96 as a result, which we consider sufficient for our use
in primarily exploring the low energy completeness. Further
optimizing the performance of stella and the associated
injection and recovery tests is beyond the scope of this paper.

From these injection and recovery tests, we find that
the low energy limit for flare recovery with stella does
change between TESS Sectors. We see a shift in the 50%
completeness energy of ∼0.25 dex, which is 6 times higher
than the typical individual uncertainty in the completeness
measurement. These results demonstrate the small varia-
tion in data quality between TESS sectors, and illustrate
stella’s sensitivity to both instrumental and astrophysical
noise.

3.1.2. Flare Characterization

To quantify the point-in-time flare activity level within a
given TESS Sector (or Kepler Quarter) we use the Flare Fre-
quency Distribution (FFD) (e.g. Lacy et al. 1976; Hilton et al.
2011), which computes the reverse cumulative distribution
of flares as a function of energy. This provides the rate of
flares above a given energy. The FFD is the standard figure
of merit for considering flare activity, as it can be compared
across observations of differing depths, cadences, or base-
lines (Davenport et al. 2019).

Flare energies are determined based on the integrated rel-
ative flux, which is quantified as the equivalent duration
(Hunt-Walker et al. 2012). We convert the equivalent du-
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ration of each flare to energy by,

log(Energy) = log(ED) + log(L) (2)

where L is the quiescent luminosity of the star given in erg
s−1, ED is the equivalent duration in units of seconds, and En-
ergy is the flare energy given in erg. For TIC-272272592, us-
ing the formula of Davenport et al. (2020) matching a Padova
(Bressan et al. 2012) isochrone, we derive a quiescent lumi-
nosity, L, of 1031.40 erg s−1. We note that the intrinsic metric
we calculate is equivalent duration, but to compare to litera-
ture values, we do this conversion to energy.

Given that stars exhibits quiescent flux variation (i.e. due
to star spot modulations) that are not constant throughout
a flare event, we determine the baseline integration point
from fitting a Gaussian Process (GP) using celerite2
(Foreman-Mackey 2018). First, we mask all of the flares in
the light curve. Then we fit a two term GP with a short term
kernel, and a long term kernel, designed to capture the light
curves variability on multiple time scales. Finally, we sub-
tract off the GP fit from the light curve, which allows us to
more accurately calculate the flare energies.

In the TESS data, where we have good constraints on our
completeness (Section 3.1), flare rates are corrected for com-
pleteness, accounting for flares potentially missed in our pro-
cess. The correction is based directly on the logistic function
fit (Equation 1), extending to the 50% completeness limit.
The low energy end of the FFD is intrinsically difficult to
constrain due to incompleteness in low energy (small ampli-
tude) flares (e.g., Feinstein et al. 2024). We explored extend-
ing our completeness corrections to lower event energies, but
found the resulting FFDs deviated from the expected power
law profile, indicating an over-correction for small flares.

As shown in Figure 3, completeness drops off rapidly as a
function of flare energy. Thus, pushing to lower complete-
ness limits (e.g. 20%) only marginally improves the flare
sample within each Sector. Due to the limited statistical ben-
efit, and the increased potential for bias, we adopt the 50%
completeness limit for the minimum flare energy in our anal-
ysis. For each Sector, the 50% completeness limit is shown
in the right panel of Figure 3. Importantly, the 50% com-
pleteness limit for Sector 41 is not an outlier, and therefore
the lack of large flares observed in this Sector cannot be at-
tributed to stella completeness or unusual noise in the
TESS data.

For each TESS sector (and Kepler quarter), we fit the FFD
using a power law distribution, which in log-log space takes
the form of a line such that,

y = αx +β, (3)

where y is the log of the cumulative flare rate, x is the log of
the flare event energy, α is the slope of the power law, and β

is the corresponding intercept.

There is evidence in the literature to suggest the FFD of
a star is a power law distribution with a fixed slope. While
there is not a consensus on the physical driver for the slope
of the FFD, with some evidence to suggest the slope of the
power law is α = −1 regardless of stellar type (e.g., Ilin
et al. 2020), there is also evidence that supports the slope
of the FFD being dependant on type of star (e.g., Feinstein
et al. 2022). To best determine the power law slope of TIC-
272272592, and negate the effects of small number statis-
tics, we combine all TESS sectors into a single FFD and
fit the slope α, and intercept β. The fitting was done with
curve_fit function in scipy (Jones et al. 2001–).

For this combined sample, we find the power law slope
α = −0.85±0.01 and β = 27.000±0.001. The uncertainties
were derived through error weighted least squares fitting, and
are underestimated (See Section 5). Throughout the rest of
our analysis, we choose to fix the power law slope to this
average value of α = −0.85 and only fit for β in each sec-
tor. The slope α = −0.85 is in agreement with the popula-
tion in similar stars in Feinstein et al. (2022), as well as tra-
ditional slope measurements for Sun-like stars (Shibayama
et al. 2013). This decision to fix the slope was also moti-
vated by the noise in individual slope measurements per sec-
tor, which impact the resulting β measurements, and our abil-
ity to compare these metrics effectively. We experimented
with fixing the slope to different values (-0.75, -1.0, -1.2, -
1.5) and find the resulting analysis of varying β values does
not appear to be sensitive to the FFD slope.

For each TESS sector, we include in our FFD analysis all
flares down to the the corresponding 50% completeness limit
determined through injection and recovery, and assume Pois-
son uncertainties on the FFD rate. These results will be fur-
ther discussed in Section 4.

3.2. Kepler Data

In addition to the five new sectors of TESS data, there are
17 quarters of archival data from Kepler mission, observed at
30-min cadence. As Tovar Mendoza et al. (2022) has shown,
newer data releases from Kepler can have small changes in
the flare sample from earlier surveys for flares in Kepler.
Therefore we independently produce a new sample of Ke-
pler flares for TIC-272272592 using the PDCSAP fluxes in
the latest available Kepler light curves.

As the underlying neural network of stella was trained
on 2-minute cadence TESS data, we are unable to use it for
the Kepler light curves at present. Instead, for the Kepler
analysis we used the FBEYE manual flare toolkit (Daven-
port et al. 2014) to visually inspect every Quarter of Kepler
data for this star. While manual flare identification is time
consuming, it has been used for many detailed studies in the
past, particularly when utilizing low amplitude events (Haw-
ley et al. 2014). In total we identified 1251 flares across the
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Figure 4. 17 quarters of 30-min cadence Kepler data for TIC-272272592, spanning over 1500 days. Each Quarter is colored by time where
increasing time corresponds to redder. High amplitude flares occur throughout the light curve. Long timescale changes in the amplitude of
rotational variability are also apparent.

17 Kepler quarters, from November 2009 to November 2013.
The previous analysis from Scoggins et al. (2019) used a sub-
set of 390 flares identified from a total sample of 1519 flares
for TIC-272272592, found by the appaloosa flare find-
ing package (Davenport 2016). This subset was chosen to
be above the estimated 68% recovery threshold. As Daven-
port et al. (2019) note, the appaloosa flare sample par-
ticularly struggled with identifying lower energy flares, and
in identifying spurious features due to rapid starspot rota-
tions in 30-min cadence data – i.e. specifically the case for
TIC-272272592. While our new sample of flares is slightly
lower the total yield from Davenport (2016), we were able
to remove many spurious events that were identified in the
original sample, and improved the flare start and stop times
through our manual inspection. The combined Kepler light
curve is shown in Figure 4, where each Quarter is normal-
ized by the median flux of the quarter, and a second order
polynomial to account for typical Kepler Quarter-to-Quarter
systematics.

In the Kepler data, we follow the procedure in Sec-
tion 3.1.2 with the exception of correcting the FFD for com-
pleteness since this information is not available in the Ke-
pler sample due to the different mechanism for flare identi-
fication. To best accommodate for this difference, and try
to remain as consistent as possible across the two samples,
we simulate the completeness limit in the TESS data by
identifying by eye where the Kepler FFD begins to deviate
from a power law, and only fit above this threshold. In the
right panel of Figure 5, we identified this threshold to be a
Energy= 1032.8 ergs for the Kepler sample, and the best fit
lines do not go below this limit. As we did with the TESS
data, for the Kepler sample, we keep the slope α fixed to the
most likely value of the star, −0.85. We also highlight that
we calculated the quiescent luminosity in the Kepler band
to be 1031.06 ergs−1, roughly 0.4 dex lower than the TESS

band, which is incorporated into the flare energy calculation
according to Equation 2.

4. RESULTS

In this section, we characterize the short term (month-to-
month), and long term (year-to-year) flare rate variability. In
Figure 2, Sector 41 appears to stand out as having a clear
deficit of large amplitude flares, with no flares having am-
plitudes above 3% in relative flux. Long term variation is
studied from both the Kepler data alone, and in comparison
between Kepler and TESS.

4.1. Short Term Variation

The primary results of this work are shown in Figure 6,
where we present the best fit intercept values β, for each
TESS Sector’s and Kepler quarter’s FFD. As seen in this Fig-
ure, flare activity in TESS Sectors 14, 15, 54, and 55 are all
extremely similar, with fit β values of 27.13, 27.13, 27.15
and 27.13 respectively (as also visualized in the FFDs of Fig-
ure 5). However, Sector 41 again appears to be an outlier,
with a maximum log10(E) of only 32.40, and a fit intercept
of 26.64, over a half a dex below the mean flare activity levels
in the other TESS Sectors. While we are unable to confirm
that the lack of large flares is due to an unlikely telescope or
pipeline systematics (i.e., anomalous cosmic ray rejection),
the star spot rotation in this quarter remains preserved, and
suggests that the processing is not responsible. Another ex-
planation is the measurement is biased by the observing win-
dow, and we will further discuss the statistical significance of
this deviation in Section 5.

In the Kepler data we choose to remove Quarter 0 from our
analysis, as it only contained 17 days of data, and therefore
has significantly higher uncertainties than the rest of the Ke-
pler data, as we will discuss in Section 5. Each Quarter was
fit with the same power law FFD model, assuming a fixed
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α, as shown in Figure 5. Our derived β values for the re-
maining 16 quarters are also visualized alongside the TESS
values in Figure 6, with point colors corresponding to those
shown in Figure 4. The Kepler flare activity level is remark-
ably flat over the 4 years of data analyzed, and we do not
find the same decline in flare activity over time suggested by
Scoggins et al. (2019). This discrepancy with earlier analy-
sis for TIC-272272592 is likely due to incorrect flare energy
estimates, especially for long duration and high amplitude
events from the original Davenport (2016) algorithm, espe-
cially from long cadence (30-min) data, and in the presence
of changing starspot amplitudes (e.g., see Figure 4). We note
that the FFDs analyzed by Davenport (2016) and by exten-
sion Scoggins et al. (2019) showed a break in the FFD for
the highest energy flares, which we find is due to incorrectly
estimating the starspot behavior “under” the flares, resulting
in unreliable flare activity estimates over time. When we cor-
rect the flare start and stop times, and the starspot model from
the original Davenport (2016) sample, we find no long dura-
tion decline is seen, consistent with our manually identified
sample above.

4.2. Long Term Variation

While our re-analysis of the Kepler flare sample does not
show the same long term trends as Scoggins et al. (2019), we
do see an offset between the Kepler and TESS data. The me-
dian Kepler flare rate has a β value nearly 0.5 dex higher than
the TESS flare data in Figure 6. Since β is determined from
the FFD, it should be robust to differences in the flare event
energy sensitives between Kepler and TESS, as opposed to
integrated flare power metrics such as the L f l/Lbol metric
(e.g., Scoggins et al. 2019; Feinstein et al. 2024) in the right
panel of Figure 6, which can also be impacted by the pres-
ence of single large energy flare events. While we prefer the
β metric for this reason, we show both for accurate compari-
son to literature studies and to demonstrate the trends present
in the data are not metric dependent.This offset in β in Fig-
ure 6 between Kepler and TESS could therefore be due to a
long term trend in the flare rates, which takes place on decade
timescales.

However, we urge caution in the interpretation of the re-
sults in Figure 6 due to the competing effects of cadence and
signal-to-noise. The Kepler data was sampled at 30-min ca-
dence with a 0.95-m aperture (e.g., Koch et al. 2010), while
the TESS data was sampled at 2-min cadence with a 10-cm
aperture (Ricker et al. 2015). While faster sampling should
yield better sensitivity to short duration flares (Howard &
MacGregor 2022), the smaller aperture of TESS means that
low amplitude (lower energy) flares are not detectable. As
Davenport et al. (2019) note, measuring flare activity via the
FFD is preferable when comparing data with different detec-

tion thresholds, but this does not account for the impact of
filter and flare temperature noted above.

As an exercise to better match the TESS and Kepler
datasets, we down sampled the TESS light curves from Sec-
tion 3.1 to 30-minute cadence, and used FBEYE (Davenport
et al. 2014), to replicate the flare identification used for Ke-
pler data. These changes result in slightly different flare sam-
ples for the TESS data, with 174 flares identified by eye, ver-
sus 237 flares identified by the automated process. This dif-
ference is not unexpected, and is due to low energy flares be-
ing detected in the 2 min data. This impacts low energy end
of the FFD, where we do not fit due to the sample incomplete-
ness evident from our injection and recovery tests. We show
the updated β values over time for TESS in Figure 7. We find
that the β value offset between the Kepler and TESS samples
is smaller when using the 30-min light curves and manual
flare identification. These results further demonstrate the ne-
cessity for consistency in flare sample methodologies when
analyzing flare statistics over time, and especially between
surveys.

Moreover, it is important to further consider the impact of
the different bandpasses between Kepler and TESS, which
affect our estimate of the flare event energies. Davenport
et al. (2020) demonstrated for GJ 1243 that the flares had en-
ergies within a few % of each other from these two missions,
assuming a typical 10,000 K blackbody flare spectrum. As in
Davenport et al. (2020), we estimated the quiescent luminos-
ity for TIC-272272592 in both the Kepler and TESS bands.
As Tovar Mendoza et al. (2022) demonstrates, flares look
qualitatively identical between Kepler and TESS.However,
the Davenport et al. (2020) comparison between Kepler and
TESS assumed a simple 10,000 K blackbody spectrum for
all flares, following the convention of many other studies
(e.g. Notsu et al. 2013). Recent work has shown that flare
temperatures can deviate significantly from this 10,000 K as-
sumption (e.g. Kowalski et al. 2013). This includes a clear
change in the temperature over the profile of the flare (i.e.,
hotter temperatures at peak flare emission, with a gradual
cooling profile), and reaching effective temperatures as high
as 40,000 K for large flares (Howard et al. 2020). Raetz &
Stelzer (2024) have similarly observed differing FFD slopes
in comparisons between Kepler and TESS, though they note
this was partially due to impacts from complex flare mor-
phologies in their energy estimates. The correlation between
flare energy and peak effective temperature, and the general
profile of temperatures throughout flare events, is an active
area of study at many wavelengths (Howard et al. 2023, Tovar
Mendoza et al. in prep). Both flare temperature profiles, and
differences between the Kepler and TESS bandpasses, can
contribute to the TESS sample having lower apparent flare
activity.
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Figure 5. Left: Flare frequency distributions (FFD) for each TESS Sector, including completeness corrected flare rates as determined in
Section 3.1. Error bars indicate rate uncertainties, where larger energy points have larger errors due to Poisson number statistics. The solid lines
represent the best fit lines, with a fixed slope of α = −0.85. Sector 41 in green is a clear outlier from the other sectors. Right: quarter by-quarter
FFD for flares in the Kepler sample. The solid lines represent the best fit lines, with a fixed slope of α = −0.85. Colors map to the time axis in
Figure 4, where red is later quarters. It is of interest to note that while the energy ranges are similar between the two telescopes, the energies
themselves are not directly analogous across telescopes due to band pass differences.

Kepler TESS
Kepler

TESS

Figure 6. Left: FFD intercepts β (Eq. 3) for both Kepler and TESS observations, with colors corresponding to Figure 4, and Figure 5 for
TESS. Error bars are derived from adding in quadrature the fitting error, and the statistical uncertainty derived in Section 5 (Figure 8). Right:
integrated flare power log(L f l/Lbol) for Kepler and TESS observations. There is a clear offset between the Kepler and the TESS data in both
panels, which could be evidence for a long term trend in flare rate, but is also sensitive to the differences in cadence, S/N, and bandpass between
Kepler and TESS.

In this work, we do not see convincing evidence of activity
cycle driven, long term flare rate variation. For an active M3
dwarf like TIC-272272592, it is unclear what activity cycles
should be expected. Current M dwarf dynamo models don’t
explore activity cycles for rapidly rotating stars, since activ-
ity cycles are typically associated with slower rotation (e.g.,

Böhm-Vitense 2007). G and K stars with Solar-like dynamos
have been shown to have activity cycles correlated with their
rotational periods and ages (Oláh et al. 2016), with more
rapidly rotating stars exhibiting shorter cycle durations. Ex-
tending such models would suggest an activity cycle of < 1yr
for a star rotating at 1.2 days. For TIC-272272592, the Ke-
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Kepler

30-min
TESS

Figure 7. FFD intercepts β (Eq. 3) as in Figure 6, but with val-
ues for the TESS Sectors from the 2-min light curves binned down
to 30-minute cadence, and flares identified using FBEYE. The off-
set between Kepler and TESS seen in Figure 6 is present, though
not as prevalent when considering similar cadence and identifica-
tions methods. However, differences in bandpasses still makes di-
rect comparison difficult.

pler data appears to rule out any strong activity cycle shorter
than 2 years. This suggests that either the convective dynamo
with such an active M dwarf either does not (or does not yet)
generate activity cycles, or they operate on timescales out-
side the sensitivity of the data analyzed here. The convective
dynamos of late type M dwarfs can show complex, multi-
polar structure (Morin et al. 2010), and variations manifested
in activity indicators like flares may as a result be stochastic
on shorter timescales.

Given the ongoing challenges in comparing flare activity
between telescopes, particularly for samples that were not
observed contemporaneously, long term trends are best con-
strained from a single telescope or survey. The TESS base-
line alone is now approaching 7 years, and for stars in the
continuous viewing zone, TESS will be able to provide the
best glimpse into both the short term (Sector-to-Sector) and
the long term (year-to-year) magnetic activity evolution via
flares. We note this as the focus of our ongoing future work.

5. STATISTICAL SIGNIFICANCE OF VARIATIONS

As noted above, Sector 41 shows a clear deviation from the
rest of the TESS Sectors in terms of both the number of large
flares visible in the light curve, and the flare activity level
recorded in the FFD β value. This begs the question: how
statistically significant is this low flare activity level, given
the stochastic nature of flares, and observing a single TESS
Sector of data?

To determine this significance, we conduct a Monte Carlo
style experiment with a theoretical power-law distribution of
flares, randomly generated over a 10 year period. For our

10 year baseline, we assume the null-hypothesis that there
are no long term trends in the flare rate, and distribute the
flares randomly throughout. We selected the parameters for
the input power-law to match the observed flare rate for TIC-
272272592, with a slope of α = −0.85. We simulated a total
of 7300 flares over the 10-year period, generating approxi-
mately 50 flares per 25-day window (i.e. close to the TESS
flare rate). To avoid biasing our sample at low flare energies,
we extended the power-law down to 1031.4 erg events, though
we only use flares above the mean 50% completeness limit
of the full sample of log(Energy) = 32.05.

From this 10-year baseline, we generate mock TESS Sec-
tors of 27 days, with a 1.12 day gap in the middle to sim-
ulate the telescope down-link period. We create 100 sim-
ulated TESS Sectors with random start times. We then re-
generate the 10-year baseline 500 times, drawing 100 mock
TESS Sectors from each realization. In total, we simulated
5000 years of flare data, generating 50,000 FFDs. The re-
sults of this Monte Carlo experiment are shown in Figure 8,
where the 500 simulated 10-year power-laws are shown in
cyan, while the 50,000 Sector re-draws are shown in black.

Due to the small variation in the 500 simulated 10-year
samples due to Poisson number statistics, we fit each 10-year
FFD independently. We then fit the 50,000 mock TESS Sec-
tor FFDs with our fixed-slope model, and we calculated the
difference from the respective 10-year value, which we de-
fine as ∆β . This ∆β quantifies the difference in the flare
activity level determined from the FFD between the 10-year
“truth” and the point-in-time estimate with a realistic TESS
Sector. The distribution of 50,000 ∆β’s from this experiment
is shown in Figure 8. We note that this distribution is not cen-
tered at ∆β=0, but rather at ∆β = 0.08, indicating that for a
single TESS sector, the fit intercept β is likely slightly over
estimated, as the presence of even a single high energy flare
will result in deviation of the FFD from a seemingly fixed
power-law shape. A similar result was demonstrated in the
single high outlier experiment for the star cluster mass func-
tion by Wainer et al. (2022).

In the left panel of Figure 8, we overlay the four flares
from TESS Sector 41 that are above our computed complete-
ness limit (re-plotted from Figure 5). From this comparison
we can see that there are simulation draws which cover the
parameter space occupied by Sector 41. While our simula-
tions were designed to match the mean flare rate observed
in TESS, and include no short- or long-term variation be-
yond random number statistics, the Sector 41 data clearly fall
within the band of the simulated TESS Sectors. This indi-
cates that the low flare rate observed in Sector 41 could plau-
sibly be explained by the stochastic nature of flare events.
Quantitatively, the ∆β distribution from our simulations in
Figure 8 shows that the ∆β = −0.51 value observed in TESS
Sector 41 is a 2.7σ outlier as compared to the other 4 Sec-
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Figure 8. Left: results for drawing ten-year baseline power-law distributions and sub-sampling TESS sectors. The 500 individual power-law
draws are shown in cyan. For each trial, 100 single TESS sector re-draws are shown in black. Shown in green is Sector 41, re-plotted from
Figure 5 for direct comparison to the simulation

. Right: the distribution of the ∆b’s for each of the sector re-draws from the left panel.

tors. While this Sector 41 is low in flare activity, a single
TESS Sector at this level is not enough to disprove the null
hypothesis that the flare rate is constant over time.

Repeating this Monte Carlo exercise for the Kepler data,
assuming each simulated Kepler Quarter was equivalent to 3
TESS Sectors, we find a 5th to 95th percentile range in the
∆β distribution of 0.30. This spread is substantially smaller
than for the TESS Sector simulation (5th to 95th percentile
range of 0.52), and is in agreement with the uncertainty we
expect from randomly drawing from a power law over a finite
time period (Figure 9). Within the actual Kepler flare sample
in Figure 6, the maximum deviation from the median β oc-
curs in Quarter 4, with a ∆β of 0.18. This is less than a 2σ
deviation, using the tests presented here. For comparison, the
5th to 95th percentile range in β values for the actual Kepler
sample are 0.19, which is smaller than what we expect from
the simulation.

To detect real variations in flare rate, we must understand
the impact that the observing baseline has on our estimate
of the FFD β. As shown above, longer baseline observa-
tions (e.g. a Kepler Quarter versus a TESS Sector) reduces
the variation in the point-in-time β. From our ensemble of
10-year flare simulations, we can easily explore the impact
of longer observing baselines. In Figure 9 we show the re-
sulting 5th to 95th percentile range in the ∆β distribution as
a function of number of consecutive simulated TESS Sec-
tors. As expected, we find that the more continuous Sec-
tors of data used to determine the FFD, the more robustly
the input power-law is recovered. The improvement in the

∆β distribution in Figure 9 follows a typical
√

N behavior
with increasing numbers of Sectors. This experiment high-
lights the value of studying flare activity evolution in the
TESS Continuous Viewing Zone, where multiple TESS Sec-
tors can be combined to improve the precision and therefore
look for lower amplitude changes in flare activity over time.
Conversely, using single TESS Sectors to constrain the point-
in-time flare rate, we are only sensitive to larger amplitude
changes in the activity level.

Lastly, we emphasize that the ∆β precision demonstrated
here is dependent on the specific flare rate of the simulated
star, and that the true improvement in the FFD comes from
increasing the numbers of flares in the sample. In other
words, a star with a higher specific flare rate would have bet-
ter ∆β precision as a function of time. However, we choose
to present this Monte Carlo result as a function of Sectors
since this is a typical flaring M dwarf, and Sectors are the
fundamental unit of time when using data from the TESS
mission.

6. CONCLUSION

We have demonstrated that flares provide a novel method
for exploring solar and stellar activity cycles. Over a decade
timescale, X-ray flares from the Sun change their occurrence
rate by more than an order of magnitude between activity
maximum and minimum. As flares are relatively easy to ob-
serve and quantify compared with other activity cycle trac-
ers or surface magnetism features (e.g. starspots), they are
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a uniquely capable metric for constraining activity cycles in
large surveys.

Following one of the first candidate flare rate variations
from Scoggins et al. (2019), we have presented a reanaly-
sis of the Kepler light curves, and one of the first flare stud-
ies from new TESS light curves, for the rapidly rotating M
dwarf, TIC-272272592. The slow decline in flare rate previ-
ously claimed is not found in our data, and careful analysis of
the FFD shows that the Kepler flare data is remarkably stable
over 4 years. We see a 0.5 dex difference between the β val-
ues of the Kepler sample compared to TESS, which we show
to be dependant on both telescope and light curve cadence
differences. Considering the TESS flare rates measured us-
ing 2-min versus 30-min light curves in §4.2, we emphasize
the difficulties in comparing flare samples between surveys
and with differing methodologies.

Within the TESS sample, we find a 2.7σ detection of dra-
matic short timescale (month-to-month) flare rate variation
for TIC-272272592, which could be the result of sampling
statistics for a power-law Poisson process within a given ob-
servation window. Our Monte Carlo tests confirm that de-
tecting small amplitude variations in flare rate requires more
than a single TESS Sector to constrain the point-in-time flare
activity level for typical active M dwarfs. High amplitude
changes in flare rate are detectable using single Sectors. The
TESS Continuous Viewing Zone is a promising region to

conduct more sensitive studies for flare rate variations, and
we are currently working on this for a follow-up project.

The methods developed here are the first in our exploration
of long term flare behavior from missions like Kepler, TESS,
and beyond. Constraining both the short term and long term
variations in flare rate is important for understanding activ-
ity cycle behavior, particularly for young stars, and for pre-
dicting the impact that flares have on e.g. exoplanet transit
detection efficiency. Wide field exoplanet surveys like TESS
allow ensemble flare studies for thousands of nearby stars on
decade timescales, which will continue to shed light on the
constancy of their variability over time.
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